Just as a made up example - with a space heater, you could get 1000 watts of heat from 1000 watts of electricity, or you can move 1500 watts of heat with 1000 watts of electricity with a heat pump.
The heat pump in my home has an SCOP of 4.9 under perfect conditions and ~3.5 under normal conditions, which means 1kW of electricity in equals 3.5-4.9kW of heat out.
Ohh okay, well yeah if you count heat pumps that's another story. I was only thinking in terms of energy generation (usually from burning something or electrical resistance).
Thanks for the video, I think I saw that channel once and it was interesting so I look forward to watching it later. It's been a long time since my thermochem course so it'll be good to revisit some concepts.
Because in the most efficient systems, you aren't creating heat, you're moving heat.
https://youtu.be/7J52mDjZzto
Just as a made up example - with a space heater, you could get 1000 watts of heat from 1000 watts of electricity, or you can move 1500 watts of heat with 1000 watts of electricity with a heat pump.
It's pretty neat.
The heat pump in my home has an SCOP of 4.9 under perfect conditions and ~3.5 under normal conditions, which means 1kW of electricity in equals 3.5-4.9kW of heat out.
Here is an alternative Piped link(s):
https://piped.video/7J52mDjZzto
Piped is a privacy-respecting open-source alternative frontend to YouTube.
I'm open-source; check me out at GitHub.
Ohh okay, well yeah if you count heat pumps that's another story. I was only thinking in terms of energy generation (usually from burning something or electrical resistance).
Thanks for the video, I think I saw that channel once and it was interesting so I look forward to watching it later. It's been a long time since my thermochem course so it'll be good to revisit some concepts.