• Pixel of Life@lemm.ee
    link
    fedilink
    English
    arrow-up
    0
    ·
    1 year ago

    This is technically possible. The cosmic microwave background, i.e. space, is extremely cold (barely above absolute zero) so it basically acts as a heatsink you can pump infinite amounts of heat into. It turns out that if you can make the food radiate heat out into space and prevent it from absorbing more heat from sunlight, it's possible to cool it below ambient temperature. This is also a completely passive process so it requires no electricity or other form of active energy input.

    The problem with this is that doing it with food might be impossible. At the moment, we can only really do it using objects with special coatings that have been optimized for this purpose.

    Here's a couple interesting videos that explain how it works:

    https://www.youtube.com/watch?v=KDRnEm-B3AI

    https://www.youtube.com/watch?v=dNs_kNilSjk

  • corship@feddit.de
    link
    fedilink
    arrow-up
    7
    ·
    edit-2
    1 year ago

    All you need to do, is figure out a way to use electro magnetic radiation to slow down particles.

    It's just a small technical challenge.

  • argh_another_username@lemmy.ca
    link
    fedilink
    arrow-up
    4
    ·
    1 year ago

    There’s something called blast freezer, which is basically a freezer with fans inside, like what convection ovens have. It cools down food much faster than a standard freezer.

  • Queen HawlSera@lemm.ee
    link
    fedilink
    English
    arrow-up
    3
    ·
    1 year ago

    The problem is that cold is merely the absence of heat, you can't inject cold into something or generate cold, because there is no such thing as cold. It's kind of like how we can make a light bulb, but we can't make a dark bulb.

    • Jourei@lemm.ee
      link
      fedilink
      English
      arrow-up
      2
      ·
      1 year ago

      Maybe we could start manufacturing mini black holes to build the dark bulbs!

    • Wanderer@lemm.ee
      link
      fedilink
      arrow-up
      0
      ·
      1 year ago

      That's the best explanation I have seen for heat.

      I've ran equations for heat so I get it more than most, but always found it difficult to explain.

  • Queen HawlSera@lemm.ee
    link
    fedilink
    English
    arrow-up
    2
    ·
    3 months ago

    Cold doesn’t exist, it is merely the absence of heat. Easier to insert heat than remove it, same reason why you can put on warmer clothes in the winter, but you can’t make yourself cold in the summer.

  • ipkpjersi@lemmy.ml
    link
    fedilink
    arrow-up
    1
    ·
    1 year ago

    We have that, it's called a fridge, and then there's a freezer for making things frozen.

    • jayknight@lemmy.ml
      link
      fedilink
      arrow-up
      2
      ·
      1 year ago

      But a fridge is the opposite of an oven. Some kind of flash freezing would be like the unmicrowave.

      • SkyNTP@lemmy.ml
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        The reason we shrink heating devices down but not cooling devices is a combined consequence of economics and the laws of thermodynamics.

        First an analogy: Making a boat that moves downstream a river is easy. Take any buoyant material like a log or a branch and drop it in water. Presto, you’ve got a mode of transportation of any size. Want to go upstream? Now you need motors to fight the current. Putting a motor on a large piece of wood, (a boat) is economically viable. Putting one on thousands of sticks? Ain’t nobody got time for that.

        As a consequence of the laws of thermodynamics, the the universe naturally converts all potential energy (fuel, electricity) into heat. The universe will do this basically on its own, over time, constantly. This is called entropy.

        Doing the reverse, taking heat and putting it back into potential energy, i.e. cooling, is difficult. You basically have to pay a price to the universe in some other way, kind of like how a motorboat has to push more water downstream than the current would have naturally moved on it’s own. This is what heat pumps (AC, fridge) do. Heat pumps put some of that heat back into potential energy, in exchange for also releasing potential energy into heat… The trick here is to do these two things in different places. The fridge’s motor converts some electrical energy into heat in exchange for being able to move some of the heat in the fridge outside of the fridge. The consequence of this is that the room the fridge is in is now hotter. Mostly because you took the heat in the fridge and moved it into the room, but also because the fridge’s motor also added some MORE heat to the room in the process in order to fight entropy. So to actually make this useful, you need to insulate what you are cooling (or it will just get warm again, warmer than it was before, because you added heat to the room), and you also want to dispose of the heat in the room. So you pump that out into the atmosphere…

        Anyway, long story short, you need insulation, refrigerant, motors, heat changers, lots of power to fight the universe’s tendency to spread heat everywhere. Technically you could miniaturize these things, but they become less efficient as you shrink them down, to the point where things smaller than a fridge are just not practical to make compared to the benefit you get from having them.

        Making small heating devices is easy. You don’t need to fight the universe. You just need an apparatus that will “go with the flow”.

  • leanleft@lemmy.ml
    link
    fedilink
    English
    arrow-up
    1
    ·
    edit-2
    6 months ago

    a can of soda can cool faster in the freezer for ~30 min.
    some people suggest adding an insulated sleeve.
    i also use freezer to cool down coffee quickly.
    < deleted. pls find info on fb/yt >

  • vrighter@discuss.tchncs.de
    link
    fedilink
    arrow-up
    0
    ·
    1 year ago

    if you see a dark area you can turn on a flashlight to emit light towards the area and make it not-dark.

    If you see a lit area and you want it unlit, there is no anti-flashlight you can point towards it to suck the light out.

    Similar kind of thing, heat can only be given, not taken. heating stuff up is easy, but for cooling the best you can do in most cases is to make it easier for the thing to give you its heat (ex by the atmosphere colder), but you can't force it.

    • worfosaurus@lemmy-api.ten4ward.social
      link
      fedilink
      arrow-up
      0
      ·
      edit-2
      1 year ago

      This is fundamentally not true.

      Light is made of electromagnetic waves. If you can control the timing of those waves precisely enough, you can add another light with the opposite phase (an inverted wave) that will cancel out the other light.

      This is what happens in the famous "double slit experiment". It's also the same principal as noise cancelling headphones albeit with sound pressure waves instead of EM waves.

      Scientists have actually cooled atoms very close to absolute zero by shining a laser at them

      • vrighter@discuss.tchncs.de
        link
        fedilink
        arrow-up
        1
        ·
        edit-2
        1 year ago

        I said "in most cases". I am aware that it is possible. We're looking at a macroscopic system here though. A microwave, not a couple of atoms in a lab. good luck cooling a couple of atoms in the center of an opaque blob of food with a laser

          • Sethayy@sh.itjust.works
            link
            fedilink
            arrow-up
            0
            ·
            edit-2
            1 year ago

            quantification of light as a particle and the theory of its wave particle duality yes is by definition quantum mechanics, which was proven first by the double slit expierament. Up until then 2 light sources never canceled each other out so it was assumed light is 100% quantifiable and a particle.

            (quantify is actually where the word quantum comes from)

            noise canceling headphones you're good for tho, the existence of waves is a different subject

            Edit: and IG if we want to talk about fundamentally untrue then, your comments also wrong cause its a pretty big thing in science that light ISNT just a wave… but of course I'm not being nitpicky right?

            • worfosaurus@lemmy-api.ten4ward.social
              link
              fedilink
              arrow-up
              0
              ·
              1 year ago
              1. It was theorized that light could be a wave way before the double slit experiment. Like, a century before. So no, it wasn't "assumed light is 100%" quantized before that experiment.

              2. Anything that is a wave can be cancelled, so this idea was baked right into the wave theory of light, they just didn't have the ability to control light precisely enough to prove it until the double slit experiment. You don't need quantum mechanics to explain wave theory, it just happened that the double slit experiment, while proving that light behaved like a wave, also showed other characteristics that it was also behaving in a quantized fashion. The fact that light is quantized into photons has nothing to do with the fact that they cancel so you really don't need quantum mechanics to explain it. The reason light can be cancelled is exactly the same as every other thing in physics that behaves like a wave.

              3. The word quantum comes from the word quantization not "quantify". Those two words mean different things

              4. Light is a wave. It also happens to be a particle. So the "existence of waves" is not a different subject. It's exactly this subject

              Edit: Love the snarky edit to a post full of being confidently wrong. I'm going to go engage with others. Good day, sir/ma'am!

              • Sethayy@sh.itjust.works
                link
                fedilink
                arrow-up
                0
                arrow-down
                1
                ·
                edit-2
                1 year ago

                Quantify and quantization youre saying have different root words? their similarity in definition and to the Latin word quantus is just coincidence? (whoops nitpicky ahem ahem)

                And of course it was hypothesized but never proven, double slit pushed it towards theory/fact

                but also I'm not sure if you know where the line of quantum mechanics to newtonian mechanics are, cause newton definitely didn't theorize too much about the energy of light